

Jenny Ji Hyun Kim

jikimji@stanford.edu | +1 650 441 6216 | Palo Alto, CA | [LinkedIn](#) | [Website](#)

EDUCATION

Stanford University , MSc in Epidemiology and Clinical Research	2025 - present
ETH Zürich , MSc in Biomedical Engineering – Biomechanics, GPA: 5.39/6.00	2020 - 2024
McGill University , Bachelor of Mechanical Engineering, GPA: 3.55/4.00	2013 - 2018
Korea University , Exchange Semester Abroad	2018

RESEARCH EXPERIENCE

Graduate Student Researcher, Snyder Lab Stanford School of Medicine , Palo Alto	Sept 2025 – present
Life Science Research Professional	Jan 2024 – Sept 2025
Visiting Student Researcher	July 2023 – Dec 2023
Advisor: Michael Snyder, PhD	
<ul style="list-style-type: none">Design and lead the <i>Beneficial Exposome</i> interventional clinical trial (NCT06093464) to investigate how natural compounds influence holistic human health; oversee participant recruitment, enrollment, communications, and high-quality longitudinal data collectionDeveloped and secured Institutional Review Board (IRB) approval (200 participants) for human subjects research involving multi-omics, wearables, validated survey measures, and environmental exposure assessmentsUtilized GC-MS for compound identification, authentication, and quality assurance of plant-derived essential oilsEstablished high-throughput in vitro assays in primary and cancer cell lines to quantify cytokines, chemokines, and growth factors using multiplex immunoassay panels, characterize downstream signaling pathways, and evaluate dose-response effects of natural plant-derived oilsApply statistical and computational methods to integrate multi-omics (lipidome, metabolome, proteome, microbiome), wearable sensors, dietary logs, and survey data to evaluate the impact of environmental factors on individual health outcomesContribute to grant proposals supporting multi-omics and exposomics research initiativesSupervise and mentor undergraduate and high school students in wet-lab and dry-lab techniques, experimental design, and data analysisCollaborate with postdoctoral researchers on integrative analyses linking omics profiles, dietary behaviors, exposures, health outcomes in Crohn's disease and habitual dietary health	
Research Scholar, Motion Analysis Lab Harvard Medical School , Boston	Sept 2022 - June 2023
Advisor: Paolo Bonato, PhD and Ivan Sunghoon Lee, PhD	
<ul style="list-style-type: none">Collaborated with clinicians, from concept to study design, to create a LiDAR and video-based (RGBD) motion analysis and assessment tool for stroke telerehabilitationDeveloped IRB protocolEmployed pose estimation algorithms, data analysis, and ML techniques to derive clinical score estimates (FMA)Utilized marker-based (VICON) and wearable sensor-based (Xsens) motion tracking to validate markerless body trackingCollected and synchronized multiple video (RGB), audio and wearable sensor data (IMU) for partial and full body tracking to estimate the recovery progress of stroke patients in home-based settings	
Research Assistant, Microsoft Computer Vision and Geometry Group ETH Zürich , Zürich	May 2022 - Sept 2022
Advisor: Marc Pollefeys, PhD	
<ul style="list-style-type: none">Collected a multi-modal dataset (including ego-centric video; RGBD tracking, audio, and hand tracking) with Microsoft HoloLens 2; aimed at understanding complex human object manipulation to develop interactive AI assistantsRecruited and collected data on over 30 participants; Post-processed and performed quality checks on the collected dataThis work 'HoloAssist' was presented at ICCV 2023	
Biomedical Research Student, Center for Project-Based Learning ETH Zürich , Zürich	Oct 2021 - Feb 2022
Advisor: Michele Magno, PhD and Seonyeong Heo, PhD	
<ul style="list-style-type: none">Designed wearable device with novel QVAR (charge-variation) capacitive sensor and inertial measurement unit (IMU) for human activity recognition and human pose estimation (further classified to detect posture within each activity)Acquired and annotated dataset to train traditional machine learning and deep learning models (RNN-LSTM, TCN)	
Biomedical Research Student, Balgrist University Hospital ETH Zürich , Zürich	Apr 2021 - May 2022
Advisor: Jonas Widmer, PhD	
<ul style="list-style-type: none">Designed deep learning pipeline to aid surgeons in pre-operative planning and post-operative analysis of spinal surgeriesDeveloped system for spinal parameter calculation and 3D-reconstruction of a patient-specific skeleton model from X-RaysSegmented region of interest using deep CNN based U-Net architecture implemented using TensorFlowImplemented CycleGAN to perform style transfer from Digitally Reconstructed Radiographs to X-Ray to improve model	

EMPLOYMENT

Working Student, Wingtra AG, Zürich	<i>Apr 2021 - Apr 2022</i>
• Performed field tests on VTOL UAV, WingtraOne	
• Quality assurance software updates; reported bugs and incidents that occurred in the field to responsible team leads	
Teaching Assistant, ETH Zürich, Zürich	<i>Aug 2021 - Dec 2021</i>
• Assisted in curriculum design of the first-time course: Praktikum Medizintechnik, a course by the Department of Health Sciences and Technology (D-HEST)	
• Aided 120 students in a practical course through CAD, FEA, and mechanical testing of a bone plate for a broken femur	
Mechanical Engineer, Mosaic Manufacturing, Toronto	<i>Apr 2019 - Apr 2020</i>
• Created an automated, high throughput multi-material 3D printing system and industrial-level 3D printer	
• Designed assembly in Solidworks, employing design for assembly (DFA) and design for manufacturing (DFM) practices	
• Created detailed 2D drawings with comprehensive application of GD&T principles to ensure precise design specifications	
• Reduced production costs by 80% by working with a contract manufacturer in China	
Supply Chain Management Intern, Rolls Royce Canada, Montreal	<i>Sept 2017 - Dec 2017</i>
• Worked in scheduling to optimize database management of pending, active, and completed jobs in different teams	
• Improved efficiency of workflow on the shop floor through tool developed using VBA to increase visibility and communication leading to an increase in reliability of schedule by 60%	
Junior Mechanical Developer, Quanser Consulting Inc., Toronto	<i>May 2015 - Sept 2015</i>
• Designed an add-on to the company's fundamental product, QUBE-Servo, to illustrate gear kinematics to students	
• Experimented with Solidworks and 3D printing to produce pre-assembled, planetary gearboxes	
• Presented at a conference (National Instruments (NI) Week) in Austin, Texas	

PUBLICATIONS

Kim, J. J. H., Yang, T. B., Zhang, X., Lin, X., Salethoor, S. N., Menon, M. M., & Snyder, M. P. (2025). Harnessing Phytochemicals for Engineering Health Solutions. *Human Genomics* (Accepted)

Park, H., Mayer, C., Wu, Y., **Kim, J.**, Ehlert, B., Lu, Y., Perelman, D., Bejikian, C., & Snyder, M. (2025). Linking Habitual Carbohydrate Intake Patterns to Postprandial Glucose Dynamics, Metabolic and Lipidomic Profiles: The Carbotype Concept. *Current Developments in Nutrition*, 9. <https://doi.org/10.1016/j.cdnut.2025.107310> (ASN Nutrition)

Lang, S., Jokeit, M., **Kim, J. H.**, Urbanschitz, L., Fisler, L., Torrez, C., Cornaz, F., Snedeker, J. G., Farshad, M., & Widmer, J. (2025). Anatomical landmark detection on bi-planar radiographs for predicting spinopelvic parameters. *Spine deformity*, 13(2), 423–431. <https://doi.org/10.1007/s43390-024-00990-0>

Lang, S., **Kim, J. H.**, Jokeit, M., Urbanschitz, L., ... Widmer, J. (2024). Automatic Prediction of Spinopelvic Parameters from Bi-Planar Radiographs. *International Meeting on Advanced Spine Techniques* (SRS IMAST).

Berends, W., **Kim, J.**, Wunderlich, B. (2016, Oct 3). Contact Resistance versus Pressure of Electrical Connections Used in Aluminium Smelter Potlines. *International Committee for Study of Bauxite, Alumina & Aluminum* (ICSOBA).

Manuscripts in Preparation

Lan, L.*, Jiang, L.* , Wong, F.* , **Kim, J.***, Jian, R, Chou, T., Bejikian, C., & Snyder, M. Stability Assessment of Metabolites, Lipids, and Proteins in Tasso-M20 Microsamples. Target: *Nature Methods*, Anticipated submission: Q1 2026

Lan, L., Armstrong, C., Seltzer, J., Wu, Y., **Kim, J.**, Kellogg, R., Chou, T., Shome, M., Jiang, L., Li, J., Liu, L., Tang, O. Z., & Snyder, M. Longitudinal Analyses of Long COVID, ME/CFS and PTLDs Using Wearable Devices and Microsampling. Target: *Nature Medicine*, Anticipated submission: Q2 2026

Park, H., Mayer, C., Wu, Y., **Kim, J.**, Ehlert, B., Lu, Y., Perelman, D., Bejikian, C., & Snyder, M. Linking Habitual Carbohydrate Intake Patterns to Postprandial Glucose Dynamics, Metabolic and Lipidomic Profiles: The Carbotype Concept. Target: *Nature Food*, Anticipated submission: Q2 2026

Zhang, X.* , Lin, X.* , Tiersma, M.* , **Kim, J.***, Wu, J., & Snyder, M. Multi-omics Approaches to Unravel Gene-Environmental Interactions in Noncommunicable Diseases. Target: *Human Genomics*, Anticipated submission: Q2 2026

Shih, J.H.* , Mayer, C.* , Schussler-Fiorenza Rose, S.M., Kamtam, D.N., Zhang, X., Chou, T., Tiersam, M.B. Tiersma, M., **Kim, J.** , Li, J.W., Celli, A., Jiang, L., Lautman, Z.D., Ikeda, C.J., McGuire, L., Rangan, E.S., Chang, E., Vilches-Moure, J., Attardi, L., Lui, N., Winslow, M., Shrager, J., Villalba Oliva, M.Á., & Snyder, M. Development of a Prediction Model for Cancer Progression Using Longitudinal Wearable Monitoring. Target: *Nature Medicine*, Anticipated submission: Q3 2026

Zhang, X.* , Lin, X.* , Ge, Y., Tiersma, M., **Kim, J.** , Li, J., Alavi, A., Bahmani, A., Cha, K., McGuire, L., Park, H., Shen, X., Wu, J., & Snyder, M. Longitudinal Monitoring of the Human Exposome in Crohn's Disease. Target: *Nature*, Anticipated Submission: Q4 2026

Zhang, X.*, Lin, X.*, Yeager, R.* Tiersma, M.* **Kim, J.***, Wu, J., Keith, R., Sears, C., Bhatnagar, A., & Snyder, M. Associations Between the Exposome, Greenness, and Blood Pressure. Target: *Circulation Research*, Anticipated Submission: Q4 2026

PRESENTATIONS & ABSTRACTS

Kim, J.J.H., Zhang, X., Lin, X., Chadha, N., Yang, T., & Snyder, M. (2024). Beneficial Exposome: Understanding Nature's Impact on Holistic Human Health. *Stanford Genetics Retreat*

Kim, J. H., Corniani, G., & Bonato, P. (2023, Oct 9). Recover-on-Track: A LiDAR and Video-based Tool for Stroke Telerehabilitation. *Body Sensor Networks - Sensors and Systems for Digital Health* (IEEE BSN).

Jokeit, M., **Kim, J. H.**, Snedeker, J. G., Farshad, M., & Widmer, J. (2022, April 22). Mesh-based 3D Reconstruction from Bi-planar Radiographs. *Medical Imaging with Deep Learning* (MIDL).

AWARDS

Best Poster Award, First Place: IEEE Body Sensor Networks - Sensors and Systems for Digital Health 2023

Best Pitch Award: ETH Sustainable Development Goal Pitch Event 2021

Best Pitch Award: AI + X Summit 2021

OTHER EXPERIENCE

InCube Challenge Participant, ETH Entrepreneur Club | Microsoft, Zürich & Lugano Oct 2021

- Participated in an entrepreneurial challenge to solve a challenge presented by Microsoft: 'How can we leverage space technology to improve local quality of life?'
- Developed 'KALDI', a risk management tool utilizing satellite data and AI, designed to help coffee roasters minimize the impact of climate change on the coffee supply chain – received best pitch award

Technical Director/Mechanical Designer, McGill Baja Racing Team Sept 2015 - Feb 2018

- Optimized the suspension of the 2017 and 2018 Baja with focus on validation and design cycle completion (Designed geometry using Optimum Kinematics; Built CAD assembly and performed FEA using NX); reduced turning radius by 20%
- Operated CNC machines, executed carbon fiber layups and conducted simple machining processes
- Managed the team's engineering drawings to be sent to manufacturing sponsors and raw material suppliers
- Offered technical support to team members and overviewed system integration
- Drove vehicle, placed: 3rd in Hill Climb, 6th in Acceleration, 3rd Dynamics, 12th Overall out of 108 teams

SKILLS & INTERESTS

Software: SAS, R, Python, MATLAB, Solidworks, Siemens NX, Fusion 360, Optimum Kinematics, OpenSim, Unity, Blender

Interests: Painting, Yoga (Yoga Alliance RYT 500 Certified), Rock Climbing (Korea University Alpine Club, Akademischer Alpenclub Zürich, Harvard Mountaineering Club)